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ELIMINATION OF THE VIBRATIONAL DEGREE OF FREEDOM

Let us make the canonical transformation of Hamiltonian Ĥ = Ĥ0 + Ĥint,

Ĥeff = e−ŜĤeŜ = Ĥ0 + Ĥint + [Ĥ0, Ŝ] + [Ĥint, Ŝ]

+ 1
2 [[Ĥ0, Ŝ], Ŝ] + 1

2 [[Ĥint, Ŝ], Ŝ] + . . . . (1)

Our goal is to choose Ŝ in a such a way that all terms of order g in Ĥeff are canceled and the first term describing
the spin-boson interaction is of order g2/ω. If we determine Ŝ by the condition

Ĥint + [Ĥ0, Ŝ] = 0, (2)

then the effective Hamiltonian becomes

Ĥeff ≈ Ĥ0 + 1
2 [Ĥint, Ŝ]. (3)

Let us consider the time-dependent operator Ŝ(t) = eiĤ0t/h̄Ŝe−iĤ0t/h̄, which obeys the Heisenberg equation ih̄
˙̂
S(t) =

[Ŝ(t), Ĥ0]. Using Eq. (2) we arrive at the equation

ih̄
˙̂
S(t) = Ĥint(t), (4)

where Ĥint(t) = eiĤ0t/h̄Ĥinte
−iĤ0t/h̄. Solving Eq. (4) we determine the desired operator Ŝ.

Jaynes-Cummings model

We identify Ĥ0 = h̄ωâ†â and Ĥint = h̄g(σ−â† + σ+â) + zaxF
2 (â† + â). Using Eq. (4) we obtain

Ŝ =
g

ω
(σ+â− σ−â†) +

zaxF

2h̄ω
(â− â†), (5)

which fulfills the condition (2). For the effective Hamiltonian we derive

Ĥeff = h̄ωâ†â+ h̄

(
∆− g2

2ω

)
σz − h̄ΩFσx

− h̄g
2

ω
σzâ
†â− h̄g2

2ω
− z2

axF
2

4h̄ω
+ Ĥ ′, (6)

where ΩF = gzaxF/2h̄ω is the Rabi frequency and Ĥ ′ = 1
3 [[Ĥint, Ŝ], Ŝ] + . . . contains the higher-order terms in (1).

We find

1

3
[[Ĥint, Ŝ], Ŝ] =

2g2zaxF

3ω2
σz(â

† + â)− 4h̄g3

3ω2
(σ−â† + σ+â)

−4h̄g3

3ω2
(σ−â†â†â+ σ+â†ââ). (7)

As long as g/ω � 1 the higher-order terms can be neglected and thus the lowest-order effective Hamiltonian is given
by Eq. (6).
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Quantum Rabi Model

Here the interaction Hamiltonian is Ĥint = h̄gσx(â† + â) + zaxF
2 (â† + â) and the canonical transformation is given

by the operator

Ŝ =
g

ω
σx(â− â†) +

zaxF

2h̄ω
(â− â†). (8)

The effective Hamiltonian is

Ĥeff = h̄ωâ†â− 2h̄ΩFσx −
h̄g2

ω
− (zaxF )2

4h̄ω
. (9)

Remarkably, due to the equality [[Ĥint, Ŝ], Ŝ] = 0 all higher-order terms in Eq. (1) vanish.

Jahn-Teller Model

Following the same procedure we have

Ĥ0 = h̄ω(â†xâx + â†yây),

Ĥint = h̄gσx(â†x + âx) + h̄gσy(ây + ây) +
ztFx

2
(â†x + âx)

+
ztFy

2
(â†y + ây). (10)

In this case the canonical transformation is represented by the operator

Ŝ =
g

ω
σx(âx − â†x) +

g

ω
σy(ây − â†y) +

ztFx
2h̄ω

(âx − â†x)

+
ztFy
2h̄ω

(ây − â†y). (11)

Using Eq. (11) we obtain the following effective Hamiltonian

Ĥeff = h̄ω(â†xâx + â†yây)− h̄Ωxσx − h̄Ωyσy − 2i
h̄g2

ω

×σz(âxâ†y − â†xây)− 2h̄g2

ω
− z2

t |~F⊥|2

4h̄ω
+ Ĥ ′, (12)

where Ωx,y = gztFx,y/h̄ω are the respective Rabi driving frequencies. The next higher-order terms in Ĥ ′ (12) are
given by

1

3
[[Ĥint, Ŝ], Ŝ] = 2i

g2ztFx
ω2

σz(â
†
y − ây)− 2i

g2ztFy
ω2

σz(â
†
x − âx)

−4h̄g3

ω2
σy{(â†y + ây)(1 + 2n̂x)− 2â†2x ây

−2â2
xâ
†
y} −

4h̄g3

ω2
σx{(â†x + âx)(1 + 2n̂y)

−2â†2y âx − 2â2
yâ
†
x}. (13)

DYNAMICAL DECOUPLING

Let us consider the Jaynes-Cummings quantum probe in the presence of additional strong carrier driving field

Ĥ = ĤJC + ĤF + Ĥd, Ĥd = h̄Ω(σ+e
iφ + σ−e

−iφ). (14)

Here Ω is the Rabi frequency for resonant carrier transition and φ is the respective phase where we set φ = 0. The
effect of the strong carrier excitation is to create dressed states defined by σx |±〉 = ± |±〉 which are separated by
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energy gap h̄Ω. These states are immune to dephasing caused by the thermal fluctuations. Indeed, expressing the
effective Hamiltonian in the dressed state basis σx |±〉 = ± |±〉 we have

ĤJC
eff = h̄(Ω− ΩF )(|+〉〈+| − |−〉〈−|)− h̄g2

ω
(|+〉〈−|+ |−〉〈+|)â†â. (15)

In this picture the effect of the thermally induce fluctuations is to drive transition between |+〉 and |−〉 states. However,
as long as the energy gap Ω is much higher than g2/ω (Ω� g2/ω) such transitions are highly supressed which allows
to neglect the second term in (15) in the rotating-wave approximation. In order to remove the dependence of the
Rabi frequency Ω in the measured signal we suggest to use a spin-echo technique. First the system is prepared in the
state |↑〉 = 1√

2
(|+〉+ |−〉) which evolves under the action of Hamiltonian (15) for a time period t/2 such that we have

|ψ(t/2)〉 = (e−i(Ω−ΩF )t/2|+〉 + ei(Ω−ΩF )t/2|−〉)/
√

2. Then the phase of the strong carrier driving field is switch by π
and the state evolves to |ψ(t/2)〉 → |ψ(t)〉 = (eiΩF t|+〉 + e−iΩF t|−〉)/

√
2. Final read-out of the ion states in the |↑〉,

|↓〉 basis yield probability outcome P↑(t) = cos2(ΩF t).


